

Oxidative Organosolv Fractionation of Lignocellulosic Biomass Assisted by Solid Catalysis and Biochemical Sugars Conversion

CERTH **CENTRE FOR RESEARCH & TECHNOLOGY** HELLAS

S.A. Karakoulia¹*, S.D. Stefanidis¹, A. Karnaouri², E. Topakas³, A.A. Lappas¹, K.G. Kalogiannis^{1,4} ¹ Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece

² Department of Crop Science, Agricultural University of Athens, Athens, Greece ³ School of Chemical Engineering, National Technical University of Athens, Athens, Greece ⁴ Department of Chemical Engineering, University of Western Macedonia, Kozani, Greece *corresponding author: matoula@certh.gr

INTRODUCTION

- Biorefineries aim to convert renewable lignocellulosic biomass to sustainable fuels and chemical products.
- ► A crucial step in this process is the pretreatment of the biomass, which separates it into cellulose, hemicellulose, and lignin streams.

- CERTH has developed an innovative organosolv pretreatment method known as OxiOrganosolv (OOS).
- ► OOS effectively fractionates lignocellulosic biomass under oxidising conditions, eliminating the need for soluble acid catalysts typically required in conventional organosolv processes. The optimal conditions for this method were 175 °C, 2 h, a 50:50 water-to-organic solvent ratio, and a 16 bar, 100% oxygen atmosphere [1].

Objective

► Reduce the intensity of the OOS conditions to *make the process more* energy-efficient and cost-effective.

Approach

- ► We utilised solid acid catalysts (zeolites) to lower the reaction temperature to 150 °C.
- We screened various zeolite catalysts.
- ► We studied the catalyst-to-feed (C/F) ratio effect with the optimum zeolite.
- ► We **recovered** and characterised the catalyst to investigate changes in its properties

EXPERIMENTAL

Feedstock: Hard wheat straw (WS) collected from fields in Northern Greece

Feedstock	Extractives,	Cellulose,	Hemicellulose,	Lignin,
	wt.%	wt.%	wt.%	wt.%
Wheat straw	15.5	39.9	22.9	16.6

Catalysts: Four different zeolitic types (Mordenite, Y, Beta and ZSM-5) with varying AI content (SAR: 5-300)

Catalyst*	Surface area, m²/g	Micropore surface area, m²/g	Brønsted acid sites, µmol/g	Lewis acid sites, µmol/g	Total acid sites, µmol/g
H-Y(5)	880	764	385	146	531
H-Y(12)	870	713	263	184	447
H-Y(30)	885	641	184	83	267
H-Y(60)	908	610	118	32	150
H-Beta(25)	609	423	229	177	406
H-Beta(75)	679	443	133	81	214
H-Beta(300)	651	488	68	5	73
H-MOR(20)	540	478	384	142	526
H-ZSM5(30)	410	260	214	87	301

*The silica-to-alumina (SAR) ratio is indicated in parentheses

Experimental setup: OOS runs were carried out in a 975 mL autoclave reactor (Fig. 1).

Fig 1. Schematic representation of the OxiOrganosolv experimental setup and procedure.

Product characterisation: NREL method [2] (**Pulp** composition)

Acid hydrolysis of pulp followed by ion chromatography (cellulose and hemicellulose content) and UV-Vis spectroscopy (acid-soluble lignin content). Acid insoluble lignin content determined from acid hydrolysis residue.

RESULTS

Screening of different zeolites

- ► The zeolites were screened at 150 °C employing a C/F ratio of 0.1.
- ► Results were compared to non-catalytic runs at the same temperature.

Fig 2. Effect of solid acid zeolites on the degree of lignin removal.

Effect of C/F ratio

Fig 3. Lignin removal (A), hemicellulose removal (B) and cellulose recovery (C) and cellulose content in the pulp (D) obtained with H-Y(5) as a function of the C/F ratio.

Saccharification potential of pulps

Fig 4. Cellulose conversion (A), and glucose yields (B) obtained from the enzymatic hydrolysis of non-catalytic and catalytic OOS pulps.

Catalyst recovery and characterisation

- ► The pulp was enzymatically hydrolysed to produce fermentable sugars, and the catalyst was recovered with the hydrolysis residue.
- Organic residues were removed from the catalyst by calcination in air at 600 °C for 3 h.

Table 1. Properties of fresh vs. recovered Y SAR 5 catalysts.

Catalyst	H-Y(5)	H-Y(5)	
Property	(fresh)	(recovered)	
Surface area, m²/g	918	745	
Micropore surface area, m ² /g	882	631	
Pore volume, cm ³ /g	0.378	0.391	
Micropore volume, cm ³ /g	0.333	0.240	
Brønsted acid sites, µmol/g	385	211	
Lewis acid sites, µmol/g	146	159	
K, ppm	0	10,400	
Na, ppm	0	12,800	
Ca, ppm	0	3,800	
Mg, ppm	0	718	

CONCLUSIONS

► At C/F=0.1, several **zeolites** facilitated lignin removal compared to the non-catalytic OOS run (Fig 2).

► H-Y significantly increased hemicellulose removal due to the promotion of acid hydrolysis (Fig 3B).

- ► Pulps with up to 71.2% cellulose content obtained with H-Y(5) at C/F=0.5 (Fig 3D).
- Enzymatic hydrolysis of the *catalytic OOS* pulp resulted in *higher cellulose conversion and higher* glucose yields compared to the pulp obtained from the non-catalytic OOS (Fig 4).
- ► The *recovered catalyst* exhibited *reduced surface* area and acidity due to its contamination with alkali and alkaline earth metals (Table 1)

REFERENCES

- [1] K.G. Kalogiannis, et al., Bioresource Technol., 313 (2020), 123599.
- [2] A. Sluiter et al., **Determination of Structural** Carbohydrates and Lignin in Biomass, NREL 2008

ACKNOWLEDGEMENTS

The research project **NanoHybrid** is implemented in the framework of H.F.R.I's call "Basic research Financing (Horizontal support of all Sciences)" under the National Recovery and Resilience Plan "Greece 2.0" funded by the European Union – NextGenerationEU (H.F.R.I. Project Number: 015795).

